Affine Invariant Curve Matching

by:

M. Zuliani, S. Bhagavathy, B. S. Manjunath and C. S. Kenney

Vision Research Lab
Department of Electrical and Computer Engineering
University of California, Santa Barbara

This project was supported by the grants ONR #N00014-04-1-0121 (Zuliani and Manjunath), ONR #N00014-02-1-0318 (Kenney) and NSF-DLI #IIS-49817432 (Bhagavathy)
Motivation

• Establish wide baseline **image correspondences** via curve matching

Motivation

Use iso-intensity level set curves.

- 😊 They are Jordan curves if they do not hit the boundaries.
- 😊 Contrast invariance property.
- 😊 If the image is defined on a continuous domain...
- 😞 ...but it is defined on a discrete lattice!
- 😞 Curves are not very smooth.
- 😞 Curves do not always have a “semantic” value.

Assumption: two corresponding curves lie on a planar surface.
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
Affine Invariant Matching

If a curve:
- lies on a plane,
- is imaged by cameras far from such plane,

Then:
- the transformation between the imaged curves can be approximated with an affine transformation.
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
Normalization procedure (see also [Åström 1993]):

- Let Γ be a Jordan curve that defines boundary of the region Ω
- Let $V(\Omega) \overset{\text{def}}{=} \int_{\Omega} dx^2$ be the area of Ω
- Let $m(\Omega) \overset{\text{def}}{=} \frac{1}{V(\Omega)} \int_{\Omega} x \, dx^2$ be the centroid of Ω.
- Let $\Sigma(\Omega) \overset{\text{def}}{=} \frac{1}{V(\Omega)} \int_{\Omega} [x - m(\Omega)] [x - m(\Omega)]^T \, dx^2$ be the covariance of Ω.
The shape of a curve - Theory

- The shape of Γ is defined as:
 \[
 S(\Gamma) \overset{\text{def}}{=} \left\{ s \in \mathbb{R}^2 : s = \Sigma(\Omega)^{-\frac{1}{2}} [x - m(\Omega)] \text{ for } x \in \Omega \right\}
 \]

- Let Γ_1 and Γ_2 be related by an affine transformation:
 \[
 \Gamma_2 = \{ x_2 \in \mathbb{R}^2 : \exists x_1 \in \Gamma_1 \text{ such that } x_2 = Ax_1 + b \}
 \]

Then $S(\Gamma_1)$ and $S(\Gamma_2)$ are geometrically congruent via a 2-dimensional rotation.
The Shape of a Curve - Example

\[\Gamma_1 \]

\[\Gamma_2 = A \Gamma_1 + b \]

\[S(\Gamma_1) \]

\[S(\Gamma_2) = R S(\Gamma_2) \]
The Shape of a Curve - Implementation

- Domain discretization.
 - Inside vs. Outside
- Computation ($\int \rightarrow \sum$) of:
 - Area of Ω.
 - Centroid of Ω.
 - Covariance of Ω.
- Shape computation.
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
The Approach - Overview

- Curve normalization + rotation invariant descriptors = affine invariant matching
- Curve labelling
 - Curve extraction
 - Curve filtering
 - Shape computation
 - Computation of shape rotation invariant descriptors
- Curve matching
 - Comparison of shape descriptors
The Approach - Shape Descriptors

- Variation of Goshtasby method [Goshtasby, 1985]
 - Non-uniform radial sampling
 - Quasi rotation invariant

Comparison:

\[
d(A, B) = \min_{-N_\theta+1 \leq i \leq N_\theta-1} \sum_{h=1}^{N_R} \sum_{k=1}^{N_\theta} A_{h,k} \text{ XOR } B_{h,<k-i>N_\theta}
\]
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
Experimental Results

Multiview Curve Database **MCD:**

- 40 objects (extracted from the MPEG-7 shape database) imaged under 7 different points of view.
- An arbitrary rotation and reflection applied to each original curve.
- The database consists of 14 curves for each of the 40 objects.
- Available contacting the authors: see

 http://vision.ece.ucsb.edu/~zuliani/MCD/MCD.shtml
Experimental Results - MCD

Precision Recall Curve

$N_R = 12, N_\theta = 15$ (updated version)
Experimental Results - Graffiti

Wide Baseline Matching example
Experimental Results - Graffiti Details

Affine Invariant Curve Matching – p. 18/23
Presentation Overview

- Affine Invariant Matching
- The Shape of a Curve
- The Approach
- Experimental Results
- Conclusions and Future Work
Conclusion and Future work

Conclusions
- A definition of shape of Jordan curves has been proposed.
- The normalization procedure can be used with any rotation invariant curve descriptor.

Future work
- The normalization procedure should be faster.
- Curve location in the scene should be integrated in the matching process.
The End

Thanks for your attention.
Precision Recall Performance

- Precision-recall curve is used to measure the descriptor performance.
 - \(A(\Gamma, T) \) is the set of \(T \) retrievals (based on the smallest distances from \(\Gamma \) in the descriptor space)
 - \(R(\Gamma) \) is the set of 14 images in the dataset relevant to \(\Gamma \).

- **Precision**: \(P(\Gamma, T) \overset{\text{def}}{=} \frac{|A(\Gamma, T) \cap R(\Gamma)|}{T} \)
 - Proportion of items retrieved that are relevant.

- **Recall**: \(C(\Gamma, T) \overset{\text{def}}{=} \frac{|A(\Gamma, T) \cap R(\Gamma)|}{14} \)
 - Proportion of relevant items that are retrieved.

- The precision recall curve is plotted by averaging precision and recall over all \(\Gamma \).
Bibliography Extension

